歡迎光臨 gug93.cn
中國-CN |
概要
進(jin)行體內巨(ju)(ju)(ju)(ju)噬(shi)細(xi)(xi)(xi)(xi)胞特異(yi)性耗(hao)竭的能(neng)力仍然是在(zai)(zai)廣泛的生理(li)背(bei)景(jing)下揭示巨(ju)(ju)(ju)(ju)噬(shi)細(xi)(xi)(xi)(xi)胞功能(neng)的有(you)(you)效(xiao)手段。與小鼠(shu)模型(xing)相比,斑(ban)馬(ma)(ma)(ma)魚(yu)(yu)具有(you)(you)卓越的成(cheng)像能(neng)力,因(yin)為(wei)它們(men)從單細(xi)(xi)(xi)(xi)胞階(jie)段到整個(ge)幼(you)蟲發育過(guo)(guo)程中(zhong)(zhong)都具有(you)(you)光學透(tou)明(ming)度。這些品(pin)質(zhi)對(dui)于體內細(xi)(xi)(xi)(xi)胞特異(yi)性耗(hao)竭變得很重要,因(yin)此(ci)可(ke)以通(tong)過(guo)(guo)顯(xian)微鏡實(shi)時跟蹤和(he)驗證目標細(xi)(xi)(xi)(xi)胞的消(xiao)(xiao)除(chu)。有(you)(you)多種方法可(ke)以去除(chu)斑(ban)馬(ma)(ma)(ma)魚(yu)(yu)中(zhong)(zhong)的巨(ju)(ju)(ju)(ju)噬(shi)細(xi)(xi)(xi)(xi)胞,包括遺(yi)傳(chuan)(例如 irf8 敲除(chu))、化(hua)學遺(yi)傳(chuan)(例如硝(xiao)基(ji)還原(yuan)酶/甲硝(xiao)唑系統)和(he)基(ji)于毒(du)素的耗(hao)竭(例如使(shi)用氯(lv)膦(lin)酸(suan)鹽脂(zhi)質(zhi)體)。在(zai)(zai)吞噬(shi)脂(zhi)質(zhi)體后使(shi)用含(han)氯(lv)膦(lin)酸(suan)鹽的脂(zhi)質(zhi)體誘導巨(ju)(ju)(ju)(ju)噬(shi)細(xi)(xi)(xi)(xi)胞凋(diao)亡可(ke)有(you)(you)效(xiao)消(xiao)(xiao)耗(hao)巨(ju)(ju)(ju)(ju)噬(shi)細(xi)(xi)(xi)(xi)胞以及測試其(qi)吞噬(shi)能(neng)力。在(zai)(zai)這里,我們(men)描述了通(tong)過(guo)(guo)靜脈(mo)注(zhu)(zhu)射(she)補(bu)充有(you)(you)熒光葡(pu)聚糖偶聯(lian)物的氯(lv)膦(lin)酸(suan)脂(zhi)質(zhi)體來全身耗(hao)竭斑(ban)馬(ma)(ma)(ma)魚(yu)(yu)幼(you)蟲巨(ju)(ju)(ju)(ju)噬(shi)細(xi)(xi)(xi)(xi)胞的詳細(xi)(xi)(xi)(xi)方案。與熒光葡(pu)聚糖共注(zhu)(zhu)射(she)可(ke)以實(shi)時跟蹤巨(ju)(ju)(ju)(ju)噬(shi)細(xi)(xi)(xi)(xi)胞耗(hao)竭,從驗證成(cheng)功靜脈(mo)注(zhu)(zhu)射(she)到巨(ju)(ju)(ju)(ju)噬(shi)細(xi)(xi)(xi)(xi)胞分(fen)子攝取及其(qi)最終(zhong)死亡開始。為(wei)了驗證巨(ju)(ju)(ju)(ju)噬(shi)細(xi)(xi)(xi)(xi)胞的高(gao)度耗(hao)竭,當在(zai)(zai)早期幼(you)蟲階(jie)段進(jin)行氯(lv)膦(lin)酸(suan)鹽注(zhu)(zhu)射(she)時,可(ke)以通(tong)過(guo)(guo)快(kuai)速中(zhong)(zhong)性紅色活體染料(liao)染色來確定腦巨(ju)(ju)(ju)(ju)噬(shi)細(xi)(xi)(xi)(xi)胞(小膠質(zhi)細(xi)(xi)(xi)(xi)胞)消(xiao)(xiao)除(chu)的水平。
Experimental workflow for in vivo macrophage-specific depletion by liposomal clodronate in larval zebrafish
背景(jing)
巨(ju)噬(shi)細(xi)(xi)胞(bao)(bao)是先天免(mian)疫(yi)(yi)(yi)(yi)系(xi)統的(de)(de)(de)(de)關鍵成(cheng)分(fen),在應對感染、無菌炎癥和(he)(he)(he)環境變化方面發揮著重要作(zuo)用。將巨(ju)噬(shi)細(xi)(xi)胞(bao)(bao)的(de)(de)(de)(de)功(gong)(gong)能(neng)(neng)與(yu)不(bu)同生(sheng)理(li)環境中相(xiang)互作(zuo)用的(de)(de)(de)(de)細(xi)(xi)胞(bao)(bao)類(lei)型(xing)的(de)(de)(de)(de)復(fu)雜組合(he)解(jie)耦的(de)(de)(de)(de)最(zui)有效方法之一是能(neng)(neng)夠(gou)特異(yi)性地消(xiao)除巨(ju)噬(shi)細(xi)(xi)胞(bao)(bao)并(bing)分(fen)析表型(xing)后果。小(xiao)鼠的(de)(de)(de)(de)這(zhe)種(zhong)耗竭實(shi)驗為巨(ju)噬(shi)細(xi)(xi)胞(bao)(bao)的(de)(de)(de)(de)作(zuo)用提供(gong)了很多(duo)見解(jie)(Hua et al., 2018; Rosowski, 2020)。然(ran)而,我們對巨(ju)噬(shi)細(xi)(xi)胞(bao)(bao)功(gong)(gong)能(neng)(neng)的(de)(de)(de)(de)理(li)解(jie)仍然(ran)不(bu)完(wan)整(zheng),小(xiao)鼠模(mo)型(xing)中的(de)(de)(de)(de)細(xi)(xi)胞(bao)(bao)耗竭實(shi)驗難(nan)以實(shi)時跟蹤和(he)(he)(he)驗證。由于這(zhe)些原因(yin)(yin),斑馬魚(yu)幼蟲的(de)(de)(de)(de)光(guang)學透明度(du)和(he)(he)(he)易于操作(zuo)性通(tong)過對靶(ba)細(xi)(xi)胞(bao)(bao)和(he)(he)(he)整(zheng)個完(wan)整(zheng)生(sheng)物體進(jin)行實(shi)時成(cheng)像,為體內高度(du)可(ke)追溯(su)和(he)(he)(he)可(ke)處理(li)的(de)(de)(de)(de)細(xi)(xi)胞(bao)(bao)消(xiao)融提供(gong)了明顯的(de)(de)(de)(de)優勢(shi)。斑馬魚(yu)的(de)(de)(de)(de)基因(yin)(yin)和(he)(he)(he)免(mian)疫(yi)(yi)(yi)(yi)系(xi)統也與(yu)人(ren)類(lei)的(de)(de)(de)(de)基因(yin)(yin)和(he)(he)(he)免(mian)疫(yi)(yi)(yi)(yi)系(xi)統具有高度(du)的(de)(de)(de)(de)正統性(Yoder et al., 2002; Santoriello et al., 2012; Howe et al., 2013)。此(ci)外,斑馬魚(yu)的(de)(de)(de)(de)適應性免(mian)疫(yi)(yi)(yi)(yi)系(xi)統直到幼年成(cheng)年階段才在功(gong)(gong)能(neng)(neng)上(shang)成(cheng)熟(Lam et al., 2004),這(zhe)使得斑馬魚(yu)幼蟲成(cheng)為研究獨(du)立于適應性免(mian)疫(yi)(yi)(yi)(yi)貢獻的(de)(de)(de)(de)先天免(mian)疫(yi)(yi)(yi)(yi)系(xi)統的(de)(de)(de)(de)絕佳(jia)平臺。
斑馬魚(yu)目前可(ke)(ke)用的(de)(de)(de)巨噬細胞耗(hao)竭方(fang)法(fa)包(bao)括遺傳和化(hua)學遺傳操作,以(yi)(yi)及基(ji)(ji)于毒素的(de)(de)(de)耗(hao)竭。巨噬細胞的(de)(de)(de)發(fa)育(yu)需要轉錄因(yin)子Pu.1(基(ji)(ji)因(yin)名稱為spi1b)以(yi)(yi)及另一(yi)種轉錄因(yin)子Irf8的(de)(de)(de)早期(qi)和持(chi)續(xu)功能(Li et al., 2011; Shiau et al., 2015; Tenor et al., 2015)。通過(guo)基(ji)(ji)因(yin)敲除或嗎啉諾(MO)反義低(di)聚物敲低(di)PU.1或irf8的(de)(de)(de)破壞(huai),為巨噬細胞耗(hao)竭提供(gong)了一(yi)種可(ke)(ke)靠的(de)(de)(de)方(fang)法(fa),而前者消融骨髓細胞,后者對巨噬細胞更具(ju)特異性(xing),但也(ye)會導(dao)致中性(xing)粒細胞數量(liang)的(de)(de)(de)增加(jia)(Shiau et al., 2015; Yang et al., 2020)。這些方(fang)法(fa)不(bu)適合時(shi)間(jian)控(kong)制(Rhodes et al., 2005; Li et al., 2011; Shiau et al., 2015; Rosowski, 2020),而氯膦酸鹽介導(dao)的(de)(de)(de)基(ji)(ji)于局部(bu)顯微注射的(de)(de)(de)巨噬細胞耗(hao)竭可(ke)(ke)以(yi)(yi)實現一(yi)定程度的(de)(de)(de)空間(jian)和時(shi)間(jian)指定(Bernut et al., 2014)。
氯(lv)膦(lin)(lin)(lin)酸鹽(yan)(也稱(cheng)為二氯(lv)亞甲基(ji)二膦(lin)(lin)(lin)酸鹽(yan))可以被細(xi)胞(bao)(bao)(bao)代謝以阻斷線粒體呼吸,這(zhe)是由于形成不可水解的(de)ATP類似物,然后導致細(xi)胞(bao)(bao)(bao)死亡(細(xi)胞(bao)(bao)(bao)凋亡)(Rosowski, 2020)。一旦注射包封(feng)在脂質體中,氯(lv)膦(lin)(lin)(lin)酸鹽(yan)很容易(yi)被巨噬(shi)細(xi)胞(bao)(bao)(bao)攝入和(he)消除,因(yin)為它在細(xi)胞(bao)(bao)(bao)內(nei)積(ji)聚(van Rooijen and Hendrikx, 2010)。由于所使用的(de)氯(lv)膦(lin)(lin)(lin)酸鹽(yan)和(he)脂質體磷脂對其他非(fei)吞(tun)噬(shi)細(xi)胞(bao)(bao)(bao)都沒有毒性(van Rooijen and Hendrikx, 2010),這(zhe)種(zhong)方法(fa)允許特異性消耗(hao)已(yi)經存(cun)在的(de)吞(tun)噬(shi)巨噬(shi)細(xi)胞(bao)(bao)(bao)。
作(zuo)為我(wo)(wo)(wo)們方案(an)設計的(de)(de)(de)(de)一(yi)部分,我(wo)(wo)(wo)們將熒(ying)光(guang)(guang)標(biao)記(ji)的(de)(de)(de)(de)葡聚糖與氯膦(lin)酸(suan)(suan)(suan)脂(zhi)質(zhi)(zhi)體共同注(zhu)射,以使我(wo)(wo)(wo)們能夠驗證精確(que)和(he)準確(que)的(de)(de)(de)(de)注(zhu)射,并(bing)跟蹤氯膦(lin)酸(suan)(suan)(suan)對整個幼(you)蟲(chong)中(zhong)巨(ju)(ju)噬(shi)(shi)細(xi)(xi)(xi)(xi)胞(bao)(bao)(bao)的(de)(de)(de)(de)影響。為此,在氯膦(lin)酸(suan)(suan)(suan)脂(zhi)質(zhi)(zhi)體與熒(ying)光(guang)(guang)標(biao)記(ji)的(de)(de)(de)(de)葡聚糖靜(jing)脈內(nei)共注(zhu)射后(hou),我(wo)(wo)(wo)們目視驗證了這(zhe)些物質(zhi)(zhi)成功注(zhu)射到循(xun)環中(zhong),并(bing)監測(ce)了巨(ju)(ju)噬(shi)(shi)細(xi)(xi)(xi)(xi)胞(bao)(bao)(bao)對熒(ying)光(guang)(guang)葡聚糖的(de)(de)(de)(de)攝取(qu)及(ji)其隨時(shi)(shi)(shi)間推移的(de)(de)(de)(de)最(zui)終(zhong)死亡。我(wo)(wo)(wo)們設計了該方案(an),包括注(zhu)射后(hou)48小(xiao)時(shi)(shi)(shi),以允許(xu)氯膦(lin)酸(suan)(suan)(suan)誘導(dao)巨(ju)(ju)噬(shi)(shi)細(xi)(xi)(xi)(xi)胞(bao)(bao)(bao)凋亡的(de)(de)(de)(de)作(zuo)用實(shi)現,因(yin)為先前在雞和(he)小(xiao)鼠中(zhong)的(de)(de)(de)(de)工作(zuo)表明氯膦(lin)酸(suan)(suan)(suan)的(de)(de)(de)(de)功效(xiao)(xiao)可能需要幾(ji)天時(shi)(shi)(shi)間,具(ju)體取(qu)決于組(zu)織(zhi)(Kameka et al., 2014; Ponzoni et al., 2018)。我(wo)(wo)(wo)們通(tong)過(guo)評估腦(nao)駐(zhu)留(liu)巨(ju)(ju)噬(shi)(shi)細(xi)(xi)(xi)(xi)胞(bao)(bao)(bao)(小(xiao)膠(jiao)質(zhi)(zhi)細(xi)(xi)(xi)(xi)胞(bao)(bao)(bao))的(de)(de)(de)(de)剩余數量,證實(shi)了氯膦(lin)酸(suan)(suan)(suan)鹽(yan)介導(dao)的(de)(de)(de)(de)巨(ju)(ju)噬(shi)(shi)細(xi)(xi)(xi)(xi)胞(bao)(bao)(bao)耗竭(jie)在注(zhu)射后(hou)48小(xiao)時(shi)(shi)(shi)內(nei)的(de)(de)(de)(de)療效(xiao)(xiao),因(yin)為可以通(tong)過(guo)中(zhong)性紅色活體染(ran)料染(ran)色對活幼(you)蟲(chong)中(zhong)的(de)(de)(de)(de)小(xiao)膠(jiao)質(zhi)(zhi)細(xi)(xi)(xi)(xi)胞(bao)(bao)(bao)進行(xing)快速分析。我(wo)(wo)(wo)們選擇(ze)在幼(you)蟲(chong)早期階段注(zhu)射3 dpf(受(shou)精后(hou)幾(ji)天),因(yin)為這(zhe)是在血(xue)腦(nao)屏障成熟之前(Jeong et al., 2008; O’Brown et al., 2019),當時(shi)(shi)(shi)我(wo)(wo)(wo)們發(fa)(fa)現我(wo)(wo)(wo)們注(zhu)射的(de)(de)(de)(de)物質(zhi)(zhi)很(hen)容(rong)易到達(da)包括大腦(nao)在內(nei)的(de)(de)(de)(de)全身巨(ju)(ju)噬(shi)(shi)細(xi)(xi)(xi)(xi)胞(bao)(bao)(bao)。使用氯膦(lin)酸(suan)(suan)(suan)鹽(yan)生效(xiao)(xiao)的(de)(de)(de)(de) 48 小(xiao)時(shi)(shi)(shi)窗(chuang)口,我(wo)(wo)(wo)們能夠在大多數注(zhu)射的(de)(de)(de)(de)斑馬(ma)魚幼(you)蟲(chong)中(zhong)實(shi)現小(xiao)膠(jiao)質(zhi)(zhi)細(xi)(xi)(xi)(xi)胞(bao)(bao)(bao)的(de)(de)(de)(de)完全消(xiao)(xiao)融(Yang et al., 2020)。總體而言,我(wo)(wo)(wo)們發(fa)(fa)現以3dpf的(de)(de)(de)(de)48小(xiao)時(shi)(shi)(shi)孵育時(shi)(shi)(shi)間靜(jing)脈顯微注(zhu)射氯膦(lin)酸(suan)(suan)(suan)脂(zhi)質(zhi)(zhi)體可有(you)效(xiao)(xiao)消(xiao)(xiao)除巨(ju)(ju)噬(shi)(shi)細(xi)(xi)(xi)(xi)胞(bao)(bao)(bao)。
參考文獻
1. Bernut, A., Herrmann, J. L., Kissa, K., Dubremetz, J. F., Gaillard, J. L., Lutfalla, G. and Kremer, L. (2014). Mycobacterium abscessus cording prevents phagocytosis and promotes abscess formation. Proc Natl Acad Sci U S A 111(10): E943-952.
2. Howe, K., Clark, M. D., Torroja, C. F., Torrance, J., Berthelot, C., Muffato, M., Collins, J. E., Humphray, S., McLaren, K. and Matthews, L. et al. (2013). The zebrafish reference genome sequence and its relationship to the human genome. Nature 496(7446): 498-503.
3. Hua, L., Shi, J., Shultz, L. D. and Ren, G. (2018). Genetic models of macrophage depletion. Methods Mol Biol 1784: 243-258.
4. Jeong, J. Y., Kwon, H. B., Ahn, J. C., Kang, D., Kwon, S. H., Park, J. A. and Kim, K. W. (2008). Functional and developmental analysis of the blood-brain barrier in zebrafish. Brain Res Bull 75(5): 619-628.
5. Kameka, A. M., Haddadi, S., Jamaldeen, F. J., Moinul, P., He, X. T., Nawazdeen, F. H., Bonfield, S., Sharif, S., van Rooijen, N. and Abdul-Careem, M. F. (2014). Clodronate treatment significantly depletes macrophages in chickens. Can J Vet Res 78(4): 274-282.
6. Karlsson, J., von Hofsten, J. and Olsson, P. E. (2001). Generating transparent zebrafish: a refined method to improve detection of gene expression during embryonic development. Mar Biotechnol (NY) 3(6): 522-527.
7. Lam, S. H., Chua, H. L., Gong, Z., Lam, T. J. and Sin, Y. M. (2004). Development and maturation of the immune system in zebrafish, Danio rerio: a gene expression profiling, in situ hybridization and immunological study. Dev Comp Immunol 28(1): 9-28.
8. Li, L., Jin, H., Xu, J., Shi, Y. and Wen, Z. (2011). Irf8 regulates macrophage versus neutrophil fate during zebrafish primitive myelopoiesis. Blood 117(4): 1359-1369.
9. O'Brown, N. M., Megason, S. G. and Gu, C. (2019). Suppression of transcytosis regulates zebrafish blood-brain barrier function. Elife 8: e47326.
10. Ponzoni, M., Pastorino, F., Di Paolo, D., Perri, P. and Brignole, C. (2018). Targeting macrophages as a potential therapeutic intervention: impact on inflammatory diseases and cancer. Int J Mol Sci 19(7).
11. Rhodes, J., Hagen, A., Hsu, K., Deng, M., Liu, T. X., Look, A. T. and Kanki, J. P. (2005). Interplay of pu.1 and gata1 determines myelo-erythroid progenitor cell fate in zebrafish. Dev Cell 8(1): 97-108.
12. Rosowski, E. E. (2020). Determining macrophage versus neutrophil contributions to innate immunity using larval zebrafish. Dis Model Mech 13(1): dmm041889.
13. Santoriello, C. and Zon, L. I. (2012). Hooked! Modeling human disease in zebrafish. J Clin Invest 122(7): 2337-2343.
14. Schindelin, J., Arganda-Carreras, I., Frise, E., Kaynig, V., Longair, M., Pietzsch, T., Preibisch, S., Rueden, C., Saalfeld, S., Schmid, B., Tinevez, J. Y., White, D. J., Hartenstein, V., Eliceiri, K., Tomancak, P. and Cardona, A. (2012). Fiji: an open-source platform for biological-image analysis. Nat Methods 9(7): 676-682.
15. Shiau, C. E., Kaufman, Z., Meireles, A. M. and Talbot, W. S. (2015). Differential requirement for irf8 in formation of embryonic and adult macrophages in zebrafish. PLoS One 10(1): e0117513.
16. Tenor, J. L., Oehlers, S. H., Yang, J. L., Tobin, D. M. and Perfect, J. R. (2015). Live imaging of host-parasite interactions in a zebrafish infection model reveals cryptococcal determinants of virulence and central nervous system invasion. mBio 6(5): e01425-01415.
17. van Rooijen, N. and Hendrikx, E. (2010). Liposomes for specific depletion of macrophages from organs and tissues. Methods Mol Biol 605: 189-203.
18. Yang, L., Jimenez, J. A., Earley, A. M., Hamlin, V., Kwon, V., Dixon, C. T. and Shiau, C. E. (2020). Drainage of inflammatory macromolecules from the brain to periphery targets the liver for macrophage infiltration. Elife 9: e58191.
19. Yoder, J. A., Nielsen, M. E., Amemiya, C. T. and Litman, G. W. (2002). Zebrafish as an immunological model system. Microbes Infect 4(14): 1469-1478.
原始文獻
1. Yang, L., Rojas, A. M. and Shiau, C. E. (2021). Liposomal Clodronate-mediated Macrophage Depletion in the Zebrafish Model. Bio-protocol 11(6): e3951. DOI: 10.21769/BioProtoc.3951.
2. Yang, L., Jimenez, J. A., Earley, A. M., Hamlin, V., Kwon, V., Dixon, C. T. and Shiau, C. E. (2020). Drainage of inflammatory macromolecules from the brain to periphery targets the liver for macrophage infiltration. Elife 9: e58191.
獨家代理
中國大陸地區
生產廠家
歐洲荷蘭王國
獨家代理
香港臺灣澳門
Copyright ? 2004-2023 靶點科技(北京)有限公(gong)司. 版(ban)權(quan)所有.